Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Searchable encryption lets an untrusted cloud server store keyword-document tuples encrypted by writers and conduct keyword searches with tokens from readers. Multi-writer schemes naturally offer broad applicability; however, it is unclear how to achieve the distinctive features of single-writer systems, namely, optimal search traversing only the result set and forward privacy invalidating old search tokens against any new data. Cutting-edge results by Wang and Chow (Usenix Security 2022) incur extra traversal over existing keywords and weaken forward privacy that only invalidates previous-issued search tokens periodically.

We propose delegatable searchable encryption (DSE) with optimal search time for the multi-writer multi-reader setting. Beyond forward privacy, DSE supports security measures countering new integrity threats by malicious clients and keyword-guessing attacks inherent to public-key schemes. These are simultaneously made conceivable via one-time delegations of updating and/or searching power from the data owner and our tailored notion of shiftable multi-recipient counter encryption. DSE also benefits from the hybrid searchable encryption idea of Wang and Chow but at a microscopic level. Our evaluation confirms the order-of-magnitude improvement in search time over real-world datasets.

View More Papers

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More