Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Vendors are often provided with updated versions of a piece of software, fixing known security issues.
However, the inability to have any guarantee that the provided patched software does not break the functionality of its original version often hinders patch deployment.
This issue is particularly severe when the patched software is only provided in its compiled binary form.
In this case, manual analysis of the patch's source code is impossible, and existing automated patch analysis techniques, which rely on source code, are not applicable.
Even when the source code is accessible, the necessity of binary-level patch verification is still crucial, as highlighted by the recent XZ Utils backdoor.

To tackle this issue, we propose VeriBin, a system able to compare a binary with its patched version and determine whether the patch is ''Safe to Apply'', meaning it does not introduce any modification that could potentially break the functionality of the original binary.
To achieve this goal, VeriBin checks functional equivalence between the original and patched binaries.
In particular, VeriBin first uses symbolic execution to systematically identify patch-introduced modifications.
Then, it checks if the detected patch-introduced modifications respect specific properties that guarantee they will not break the original binary's functionality.
To work without source code, VeriBin's design solves several challenges related to the absence of semantic information (removed during the compilation process) about the analyzed code and the complexity of symbolically executing large functions precisely.
Our evaluation of VeriBin on a dataset of 86 samples shows that it achieves an accuracy of 93.0% with no false positives, requiring only minimal analyst input.
Additionally, we showcase how VeriBin can be used to detect the recently discovered XZ Utils backdoor.

View More Papers

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More

SNITCH: Leveraging IP Geolocation for Active VPN Detection

Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Read More