Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Vendors are often provided with updated versions of a piece of software, fixing known security issues.
However, the inability to have any guarantee that the provided patched software does not break the functionality of its original version often hinders patch deployment.
This issue is particularly severe when the patched software is only provided in its compiled binary form.
In this case, manual analysis of the patch's source code is impossible, and existing automated patch analysis techniques, which rely on source code, are not applicable.
Even when the source code is accessible, the necessity of binary-level patch verification is still crucial, as highlighted by the recent XZ Utils backdoor.

To tackle this issue, we propose VeriBin, a system able to compare a binary with its patched version and determine whether the patch is ''Safe to Apply'', meaning it does not introduce any modification that could potentially break the functionality of the original binary.
To achieve this goal, VeriBin checks functional equivalence between the original and patched binaries.
In particular, VeriBin first uses symbolic execution to systematically identify patch-introduced modifications.
Then, it checks if the detected patch-introduced modifications respect specific properties that guarantee they will not break the original binary's functionality.
To work without source code, VeriBin's design solves several challenges related to the absence of semantic information (removed during the compilation process) about the analyzed code and the complexity of symbolically executing large functions precisely.
Our evaluation of VeriBin on a dataset of 86 samples shows that it achieves an accuracy of 93.0% with no false positives, requiring only minimal analyst input.
Additionally, we showcase how VeriBin can be used to detect the recently discovered XZ Utils backdoor.

View More Papers

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More