Chang Yue (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China)

The widespread use of mobile apps meets user needs but also raises security concerns. Current security analysis methods often fall short in addressing user concerns as they do not parse app behavior from the user's standpoint, leading to users not fully understanding the risks within the apps and unknowingly exposing themselves to privacy breaches. On one hand, their analysis and results are usually presented at the code level, which may not be comprehensible to users. On the other hand, they neglect to account for the users' perceptions of the app behavior. In this paper, we aim to extract user-related behaviors from apps and explain them to users in a comprehensible natural language form, enabling users to perceive the gap between their expectations and the app's actual behavior, and assess the risks within the inconsistencies independently. Through experiments, our tool emph{InconPreter} is shown to effectively extract inconsistent behaviors from apps and provide accurate and reasonable explanations. InconPreter achieves an inconsistency identification precision of 94.89% on our labeled dataset, and a risk analysis accuracy of 94.56% on widely used Android malware datasets. When applied to real-world (wild) apps, InconPreter identifies 1,664 risky inconsistent behaviors from 413 apps out of 10,878 apps crawled from Google Play, including the leakage of location, SMS, and contact information, as well as unauthorized audio recording, etc., potentially affecting millions of users. Moreover, InconPreter can detect some behaviors that are not identified by previous tools, such as unauthorized location disclosure in various scenarios (e.g. taking photos, chatting, and enabling mobile hotspots, etc.). We conduct a thorough analysis of the discovered behaviors to deepen the understanding of inconsistent behaviors, thereby helping users better manage their privacy and providing insights for privacy design in further app development.

View More Papers

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Translating C To Rust: Lessons from a User Study

Ruishi Li (National University of Singapore), Bo Wang (National University of Singapore), Tianyu Li (National University of Singapore), Prateek Saxena (National University of Singapore), Ashish Kundu (Cisco Research)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More