Katherine S. Zhang (Purdue University), Claire Chen (Pennsylvania State University), Aiping Xiong (Pennsylvania State University)

Artificial intelligence (AI) systems in autonomous driving are vulnerable to a number of attacks, particularly the physical-world attacks that tamper with physical objects in the driving environment to cause AI errors. When AI systems fail or are about to fail, human drivers are required to take over vehicle control. To understand such human and AI collaboration, in this work, we examine 1) whether human drivers can detect these attacks, 2) how they project the consequent autonomous driving, 3) and what information they expect for safely taking over the vehicle control. We conducted an online survey on Prolific. Participants (N = 100) viewed benign and adversarial images of two physical-world attacks. We also presented videos of simulated driving for both attacks. Our results show that participants did not seem to be aware of the attacks. They overestimated the AI’s ability to detect the object in the dirty-road attack than in the stop-sign attack. Such overestimation was also evident when participants predicted AI’s ability in autonomous driving. We also found that participants expected different information (e.g., warnings and AI explanations) for safely taking over the control of autonomous driving.

View More Papers

Evasion Attacks and Defenses on Smart Home Physical Event...

Muslum Ozgur Ozmen (Purdue University), Ruoyu Song (Purdue University), Habiba Farrukh (Purdue University), Z. Berkay Celik (Purdue University)

Read More

Power to the Data Defenders: Human-Centered Disclosure Risk Calibration...

Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

Read More

I Still Know What You Watched Last Sunday: Privacy...

Carlotta Tagliaro (TU Wien), Florian Hahn (University of Twente), Riccardo Sepe (Guess Europe Sagl), Alessio Aceti (Sababa Security SpA), Martina Lindorfer (TU Wien)

Read More

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More