Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Coverage-guided greybox fuzzers rely on feedback derived from control-flow coverage to explore a target program and uncover bugs. This is despite control-flow feedback offering only a coarse-grained approximation of program behavior. Data flow intuitively more-accurately characterizes program behavior. Despite this advantage, fuzzers driven by data-flow coverage have received comparatively little attention, appearing mainly when heavyweight program analyses (e.g., taint analysis, symbolic execution) are used. Unfortunately, these more accurate analyses incur a high run-time penalty, impeding fuzzer throughput. Lightweight data-flow alternatives to control-flow fuzzing remain unexplored.

We present DATAFLOW, a greybox fuzzer driven by lightweight data-flow profiling. Whereas control-flow edges represent the order of operations in a program, data-flow edges capture the dependencies between operations that produce data values and the operations that consume them: indeed, there may be no control dependence between those operations. As such, data-flow coverage captures behaviors not visible as control flow and intuitively discovers more or different bugs. Moreover, we establish a framework for reasoning about data-flow coverage, allowing the computational cost of exploration to be balanced with precision.

We perform a preliminary evaluation of DATAFLOW, comparing fuzzers driven by control flow, taint analysis (both approximate and exact), and data flow. Our initial results suggest that, so far, pure coverage remains the best coverage metric for uncovering bugs in most targets we fuzzed (72 % of them). However, data-flow coverage does show promise in targets where control flow is decoupled from semantics (e.g., parsers). Further evaluation and analysis on a wider range of targets is required.

View More Papers

SemperFi: Anti-spoofing GPS Receiver for UAVs

Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

Read More

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

FakeGuard: Exploring Haptic Response to Mitigate the Vulnerability in...

Aditya Singh Rathore (University at Buffalo, SUNY), Yijie Shen (Zhejiang University), Chenhan Xu (University at Buffalo, SUNY), Jacob Snyderman (University at Buffalo, SUNY), Jinsong Han (Zhejiang University), Fan Zhang (Zhejiang University), Zhengxiong Li (University of Colorado Denver), Feng Lin (Zhejiang University), Wenyao Xu (University at Buffalo, SUNY), Kui Ren (Zhejiang University)

Read More

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More