Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Coverage-guided greybox fuzzers rely on feedback derived from control-flow coverage to explore a target program and uncover bugs. This is despite control-flow feedback offering only a coarse-grained approximation of program behavior. Data flow intuitively more-accurately characterizes program behavior. Despite this advantage, fuzzers driven by data-flow coverage have received comparatively little attention, appearing mainly when heavyweight program analyses (e.g., taint analysis, symbolic execution) are used. Unfortunately, these more accurate analyses incur a high run-time penalty, impeding fuzzer throughput. Lightweight data-flow alternatives to control-flow fuzzing remain unexplored.

We present DATAFLOW, a greybox fuzzer driven by lightweight data-flow profiling. Whereas control-flow edges represent the order of operations in a program, data-flow edges capture the dependencies between operations that produce data values and the operations that consume them: indeed, there may be no control dependence between those operations. As such, data-flow coverage captures behaviors not visible as control flow and intuitively discovers more or different bugs. Moreover, we establish a framework for reasoning about data-flow coverage, allowing the computational cost of exploration to be balanced with precision.

We perform a preliminary evaluation of DATAFLOW, comparing fuzzers driven by control flow, taint analysis (both approximate and exact), and data flow. Our initial results suggest that, so far, pure coverage remains the best coverage metric for uncovering bugs in most targets we fuzzed (72 % of them). However, data-flow coverage does show promise in targets where control flow is decoupled from semantics (e.g., parsers). Further evaluation and analysis on a wider range of targets is required.

View More Papers

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More

What You See is Not What the Network Infers:...

Yijun Yang (The Chinese University of Hong Kong), Ruiyuan Gao (The Chinese University of Hong Kong), Yu Li (The Chinese University of Hong Kong), Qiuxia Lai (Communication University of China), Qiang Xu (The Chinese University of Hong Kong)

Read More

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More