Zekun Cai (Penn State University), Aiping Xiong (Penn State University)

To enhance the acceptance of connected autonomous vehicles (CAVs) and facilitate designs to protect people’s privacy, it is essential to evaluate how people perceive the data collection and use inside and outside the CAVs and investigate effective ways to help them make informed privacy decisions. We conducted an online survey (N = 381) examining participants’ utility-privacy tradeoff and data-sharing decisions in different CAV scenarios. Interventions that may encourage safer data-sharing decisions were also evaluated relative to a control. Results showed that the feedback intervention was effective in enhancing participants’ knowledge of possible inferences of personal information in the CAV scenarios. Consequently, it helped participants make more conservative data-sharing decisions. We also measured participants’ prior experience with connectivity and driver-assistance technologies and obtained its influence on their privacy decisions. We discuss the implications of the results for usable privacy design for CAVs.

View More Papers

Cybercrime Investigators are Users Too! Understanding the Socio-Technical Challenges...

Mariam Nouh (University of Oxford); Jason R. C. Nurse (University of Kent); Helena Webb, Michael Goldsmith (University of Oxford)

Read More

Throwaway Accounts and Moderation on Reddit

Cheng Guo (Clemson University), Kelly Caine (Clemson University)

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More