Scott Jordan (University of California, Irvine), Yoshimichi Nakatsuka (University of California, Irvine), Ercan Ozturk (University of California, Irvine), Andrew Paverd (Microsoft Research), Gene Tsudik (University of California, Irvine)

Recent data protection regulations (notably, GDPR and CCPA) grant consumers various rights, including the right to access, modify or delete any personal information collected about them (and retained) by a service provider. To exercise these rights, one must submit a verifiable consumer request proving that the collected data indeed pertains to them. This action is straightforward for consumers with active accounts with a service provider at the time of data collection, since they can use standard (e.g., password-based) means of authentication to validate their requests. However, a major conundrum arises from the need to support consumers without accounts to exercise their rights. To this end, some service providers began requiring such accountless consumers to reveal and prove their identities (e.g., using government-issued documents, utility bills, or credit card numbers) as part of issuing a verifiable consumer request. While understandable as a short-term fix, this approach is cumbersome and expensive for service providers as well as privacy-invasive for consumers.

Consequently, there is a strong need to provide better means of authenticating requests from accountless consumers. To achieve this, we propose VICEROY, a privacy-preserving and scalable framework for producing proofs of data ownership, which form a basis for verifiable consumer requests. Building upon existing web techniques and features, VICEROY allows accountless consumers to interact with service providers, and later prove that they are the same person in a privacy-preserving manner, while requiring minimal changes for both parties. We design and implement VICEROY with emphasis on security/privacy, deployability and usability. We also assess its practicality via extensive experiments.

View More Papers

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More

Hope of Delivery: Extracting User Locations From Mobile Instant...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More