Kai Wang (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Wenqi Chen (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Deep learning (DL) performs well in many traffic analysis tasks. Nevertheless, the vulnerability of deep learning weakens the real-world performance of these traffic analyzers (e.g., suffering from evasion attack). Many studies in recent years focused on robustness certification for DL-based models. But existing methods perform far from perfectly in the traffic analysis domain. In this paper, we try to match three attributes of DL-based traffic analysis systems at the same time: (1) highly heterogeneous features, (2) varied model designs, (3) adversarial operating environments. Therefore, we propose BARS, a general robustness certification framework for DL-based traffic analysis systems based on boundary-adaptive randomized smoothing. To obtain tighter robustness guarantee, BARS uses optimized smoothing noise converging on the classification boundary. We firstly propose the Distribution Transformer for generating optimized smoothing noise. Then to optimize the smoothing noise, we propose some special distribution functions and two gradient based searching algorithms for noise shape and noise scale. We implement and evaluate BARS in three practical DL-based traffic analysis systems. Experiment results show that BARS can achieve tighter robustness guarantee than baseline methods. Furthermore, we illustrate the practicability of BARS through five application cases (e.g., quantitatively evaluating robustness).

View More Papers

Tactics, Threats & Targets: Modeling Disinformation and its Mitigation

Shujaat Mirza (New York University), Labeeba Begum (New York University Abu Dhabi), Liang Niu (New York University), Sarah Pardo (New York University Abu Dhabi), Azza Abouzied (New York University Abu Dhabi), Paolo Papotti (EURECOM), Christina Pöpper (New York University Abu Dhabi)

Read More

RR: A Fault Model for Efficient TEE Replication

Baltasar Dinis (Instituto Superior Técnico (IST-ULisboa) / INESC-ID / MPI-SWS), Peter Druschel (MPI-SWS), Rodrigo Rodrigues (Instituto Superior Técnico (IST-ULisboa) / INESC-ID)

Read More

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

Your Router is My Prober: Measuring IPv6 Networks via...

Long Pan (Tsinghua University), Jiahai Yang (Tsinghua University), Lin He (Tsinghua University), Zhiliang Wang (Tsinghua University), Leyao Nie (Tsinghua University), Guanglei Song (Tsinghua University), Yaozhong Liu (Tsinghua University)

Read More