Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

With the increased capabilities at the edge (e.g., mobile device) and more stringent privacy requirement, it becomes a recent trend for deep learning-enabled applications to pre-process sensitive raw data at the edge and transmit the features to the backend cloud for further processing. A typical application is to run machine learning (ML) services on facial images collected from different individuals. To prevent identity theft, conventional methods commonly rely on an adversarial game-based approach to shed the identity information from the feature. However, such methods can not defend against adaptive attacks, in which an attacker takes a countermove against a known defence strategy.

We propose Crafter, a feature crafting mechanism deployed at the edge, to protect the identity information from adaptive model inversion attacks while ensuring the ML tasks are properly carried out in the cloud. The key defence strategy is to mislead the attacker to a non-private prior from which the attacker gains little about the private identity. In this case, the crafted features act like poison training samples for attackers with adaptive model updates. Experimental results indicate that Crafter successfully defends both basic and possible adaptive attacks, which can not be achieved by state-of-the-art adversarial game-based methods.

View More Papers

FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks...

Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More

Improving the Robustness of Transformer-based Large Language Models with...

Lujia Shen (Zhejiang University), Yuwen Pu (Zhejiang University), Shouling Ji (Zhejiang University), Changjiang Li (Penn State), Xuhong Zhang (Zhejiang University), Chunpeng Ge (Shandong University), Ting Wang (Penn State)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More