Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Although numerous dynamic testing techniques have been developed, they can hardly be directly applied to firmware of deeply embedded (e.g., microcontroller-based) devices due to the tremendously different runtime environment and restricted resources on these devices. This work tackles these challenges by leveraging the unique position of microcontroller devices during firmware development. That is, firmware developers have to rely on a powerful engineering workstation that connects to the target device to program and debug code. Therefore, we develop a decoupled firmware testing framework named IPEA, which shifts the overhead of resource-intensive analysis tasks from the microcontroller to the workstation. Only lightweight “needle probes” are left in the firmware to collect internal execution information without processing it. We also instantiated this framework with a sanitizer based on pointer capability (IPEA-San) and a greybox fuzzer (IPEA-Fuzz). By comparing IPEA-San with a port of AddressSanitizer for microcontrollers, we show that IPEA-San reduces memory overhead by 62.75% in real-world firmware with better detection accuracy. Combining IPEA-Fuzz with IPEA-San, we found 7 zero-day bugs in popular IoT libraries (3) and peripheral driver code (4).

View More Papers

Sharing cyber threat intelligence: Does it really help?

Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More