Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Although numerous dynamic testing techniques have been developed, they can hardly be directly applied to firmware of deeply embedded (e.g., microcontroller-based) devices due to the tremendously different runtime environment and restricted resources on these devices. This work tackles these challenges by leveraging the unique position of microcontroller devices during firmware development. That is, firmware developers have to rely on a powerful engineering workstation that connects to the target device to program and debug code. Therefore, we develop a decoupled firmware testing framework named IPEA, which shifts the overhead of resource-intensive analysis tasks from the microcontroller to the workstation. Only lightweight “needle probes” are left in the firmware to collect internal execution information without processing it. We also instantiated this framework with a sanitizer based on pointer capability (IPEA-San) and a greybox fuzzer (IPEA-Fuzz). By comparing IPEA-San with a port of AddressSanitizer for microcontrollers, we show that IPEA-San reduces memory overhead by 62.75% in real-world firmware with better detection accuracy. Combining IPEA-Fuzz with IPEA-San, we found 7 zero-day bugs in popular IoT libraries (3) and peripheral driver code (4).

View More Papers

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More